## **Contents**

Preface to the First International Edition xvPreface to the Second International Edition xviiAbbreviations xix

| 1     | Introduction 1                                        |
|-------|-------------------------------------------------------|
| 1.1   | Introduction 1                                        |
| 1.1.1 | Why Photovoltaics? 1                                  |
| 1.1.2 | Who Should Read This Book? 2                          |
| 1.1.3 | Structure of the Book 2                               |
| 1.2   | What Is Energy? 3                                     |
| 1.2.1 | Definition of Energy 3                                |
| 1.2.2 | Units of Energy 4                                     |
| 1.2.3 | Primary, Secondary, and End Energy 5                  |
| 1.2.4 | Energy Content of Various Substances 6                |
| 1.3   | Problems with Today's Energy Supply 7                 |
| 1.3.1 | Growing Energy Requirements 7                         |
| 1.3.2 | Tightening of Resources 8                             |
| 1.3.3 | Climate Change 9                                      |
| 1.3.4 | Hazards and Disposal 11                               |
| 1.4   | Renewable Energies 11                                 |
| 1.4.1 | The Family of Renewable Energies 11                   |
| 1.4.2 | Advantages and Disadvantages of Renewable Energies 12 |
| 1.4.3 | Previous Development of Renewable Energies 13         |
| 1.5   | Photovoltaics – The Most Important in Brief 13        |
| 1.5.1 | What Does "Photovoltaics" Mean? 13                    |
| 1.5.2 | What Are Solar Cells and Solar Modules? 14            |
| 1.5.3 | How Is a Typical Photovoltaic Plant Structured? 14    |
| 1.5.4 | What Does a Photovoltaic Plant "Bring?" 15            |
| 1.6   | History of Photovoltaics 16                           |
| 1.6.1 | How It all Began 16                                   |
| 1.6.2 | The First Real Solar Cells 17                         |
| 1.6.3 | From Space to Earth 19                                |
| 1.6.4 | From Toy to Energy Source 20                          |

| <b>vi</b> Contents |  |
|--------------------|--|
|--------------------|--|

| 2       | Solar Radiation 23                                          |  |  |  |  |  |
|---------|-------------------------------------------------------------|--|--|--|--|--|
|         |                                                             |  |  |  |  |  |
| 2.1     | Properties of Solar Radiation 23                            |  |  |  |  |  |
| 2.1.1   | Solar Constant 23                                           |  |  |  |  |  |
| 2.1.2   | Spectrum of the Sun 23                                      |  |  |  |  |  |
| 2.1.3   | Air Mass 25                                                 |  |  |  |  |  |
| 2.2     | Global Radiation 25                                         |  |  |  |  |  |
| 2.2.1   | Origin of Global Radiation 25                               |  |  |  |  |  |
| 2.2.2   | Contributions of Diffuse and Direct Radiation 26            |  |  |  |  |  |
| 2.2.3   | Global Radiation Maps 28                                    |  |  |  |  |  |
| 2.3     | Calculation of the Position of the Sun 30                   |  |  |  |  |  |
| 2.3.1   | Declination of the Sun 30                                   |  |  |  |  |  |
| 2.3.2   |                                                             |  |  |  |  |  |
|         | Calculating the Path of the Sun 32                          |  |  |  |  |  |
| 2.4     | Radiation on Tilted Surfaces 35                             |  |  |  |  |  |
| 2.4.1   | Radiation Calculation with the Three-component Model 35     |  |  |  |  |  |
| 2.4.1.1 | Direct Radiation 35                                         |  |  |  |  |  |
| 2.4.1.2 | Diffuse Radiation 36                                        |  |  |  |  |  |
| 2.4.1.3 | Reflected Radiation 37                                      |  |  |  |  |  |
| 2.4.2   | Radiation Estimates with Diagrams and Tables 38             |  |  |  |  |  |
| 2.4.3   | Yield Gain through Tracking 41                              |  |  |  |  |  |
| 2.5     | Radiation Availability and World Energy Consumption 41      |  |  |  |  |  |
| 2.5.1   | The Solar Radiation Energy Cube 41                          |  |  |  |  |  |
| 2.5.2   | The Sahara Miracle 45                                       |  |  |  |  |  |
| 2.3.2   | The Sahara Will acie 45                                     |  |  |  |  |  |
| 2       | Fundamentals of Comisanduster Physics 47                    |  |  |  |  |  |
| 3       | Fundamentals of Semiconductor Physics 47                    |  |  |  |  |  |
| 3.1     | Structure of a Semiconductor 47                             |  |  |  |  |  |
| 3.1.1   | Bohr's Atomic Model 47                                      |  |  |  |  |  |
| 3.1.2   | Periodic Table of Elements 49                               |  |  |  |  |  |
| 3.1.3   | Structure of the Silicon Crystal 49                         |  |  |  |  |  |
| 3.1.4   | Compound Semiconductors 49                                  |  |  |  |  |  |
| 3.2     | Band Model of a Semiconductor 51                            |  |  |  |  |  |
| 3.2.1   | Origin of Energy Bands 51                                   |  |  |  |  |  |
| 3.2.2   | Differences in Isolators, Semiconductors, and Conductors 53 |  |  |  |  |  |
| 3.2.3   | Intrinsic Carrier Concentration 53                          |  |  |  |  |  |
| 3.3     | Charge Transport in Semiconductors 55                       |  |  |  |  |  |
| 3.3.1   | Field Currents 55                                           |  |  |  |  |  |
| 3.3.2   |                                                             |  |  |  |  |  |
|         | Diffusion Currents 56                                       |  |  |  |  |  |
| 3.4     | Doping of Semiconductors 57                                 |  |  |  |  |  |
| 3.4.1   | n-Doping 57                                                 |  |  |  |  |  |
| 3.4.2   | p-Doping 58                                                 |  |  |  |  |  |
| 3.5     | The p–n Junction 59                                         |  |  |  |  |  |
| 3.5.1   | Principle of Method of Operation 59                         |  |  |  |  |  |
| 3.5.2   | Band Diagram of the p-n Junction 61                         |  |  |  |  |  |
| 3.5.3   | Behavior with Applied Voltage 62                            |  |  |  |  |  |
| 3.5.4   | Diode Characteristics 63                                    |  |  |  |  |  |
| 3.6     | Interaction of Light and Semiconductors 64                  |  |  |  |  |  |
| 3.6.1   | Phenomenon of Light Absorption 64                           |  |  |  |  |  |
|         |                                                             |  |  |  |  |  |
| 3.6.1.1 | F                                                           |  |  |  |  |  |
| 3.6.1.2 | Direct and Indirect Semiconductors 65                       |  |  |  |  |  |

| 3.6.2<br>3.6.2.1 | Light Reflection on Surfaces 67 Reflection Factor 67                                  |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|
| 3.6.2.2          |                                                                                       |  |  |  |  |  |
|                  |                                                                                       |  |  |  |  |  |
| 4                | Structure and Method of Operation of Solar Cells 71                                   |  |  |  |  |  |
| 4.1              | Consideration of the Photodiode 71                                                    |  |  |  |  |  |
| 4.1.1            | Structure and Characteristics 71                                                      |  |  |  |  |  |
| 4.1.2<br>4.2     | Equivalent Circuit 73                                                                 |  |  |  |  |  |
| 4.2.1            | Method of Function of the Solar Cell 73 Principle of the Structure 73                 |  |  |  |  |  |
| 4.2.1            | <u> </u>                                                                              |  |  |  |  |  |
| 4.2.3            | Recombination and Diffusion Length 74 What Happens in the Individual Cell Regions? 75 |  |  |  |  |  |
| 4.2.3.1          | Absorption in the Emitter 75                                                          |  |  |  |  |  |
| 4.2.3.1          | Absorption in the Space Charge Region 76                                              |  |  |  |  |  |
| 4.2.3.3          | Absorption Within the Diffusion Length of the Electrons 76                            |  |  |  |  |  |
| 4.2.3.4          | Absorption Outside the Diffusion Length of the Electrons 76                           |  |  |  |  |  |
| 4.2.4            | Back-surface Field 77                                                                 |  |  |  |  |  |
| 4.3              | Photocurrent 77                                                                       |  |  |  |  |  |
| 4.3.1            | Absorption Efficiency 78                                                              |  |  |  |  |  |
| 4.3.2            | Quantum Efficiency 79                                                                 |  |  |  |  |  |
| 4.3.3            | Spectral Sensitivity 79                                                               |  |  |  |  |  |
| 4.4              | Characteristic Curve and Characteristic Parameters 80                                 |  |  |  |  |  |
| 4.4.1            | Short-circuit Current $I_{SC}$ 81                                                     |  |  |  |  |  |
| 4.4.2            | Open-circuit Voltage $V_{\rm OC}$ 82                                                  |  |  |  |  |  |
| 4.4.3            | Maximum Power Point (MPP) 82                                                          |  |  |  |  |  |
| 4.4.4            | Fill Factor (FF) 82                                                                   |  |  |  |  |  |
| 4.4.5            | Efficiency $\eta$ 83                                                                  |  |  |  |  |  |
| 4.4.6            | Temperature Dependence of Solar Cells 83                                              |  |  |  |  |  |
| 4.5              | Electrical Description of Real Solar Cells 85                                         |  |  |  |  |  |
| 4.5.1            | Simplified Model 85                                                                   |  |  |  |  |  |
| 4.5.2            | Standard Model (Single-diode Model) 86                                                |  |  |  |  |  |
| 4.5.3            | Two-diode Model 86                                                                    |  |  |  |  |  |
| 4.5.4            | Determining the Parameters of the Equivalent Circuit 88                               |  |  |  |  |  |
| 4.6              | Considering Efficiency 90                                                             |  |  |  |  |  |
| 4.6.1            | Spectral Efficiency 91                                                                |  |  |  |  |  |
| 4.6.2            | Theoretical Efficiency 94                                                             |  |  |  |  |  |
| 4.6.3            | Losses in Real Solar Cells 96                                                         |  |  |  |  |  |
| 4.6.3.1          | Optical Losses, Reflection on the Surface 96                                          |  |  |  |  |  |
| 4.6.3.2          | Electrical Losses and Ohmic Losses 98                                                 |  |  |  |  |  |
| 4.7              | High-efficiency Cells 99                                                              |  |  |  |  |  |
| 4.7.1            | Buried-contact Cell 99                                                                |  |  |  |  |  |
| 4.7.2            | Point-contact Cell (IBC Cell) 99                                                      |  |  |  |  |  |
| 4.7.3            | PERL and PERC Cell 101                                                                |  |  |  |  |  |
| 5                | Cell Technologies 103                                                                 |  |  |  |  |  |
| 5.1              | Production of Crystalline Silicon Cells 103                                           |  |  |  |  |  |
| 5.1.1            | From Sand to Silicon 103                                                              |  |  |  |  |  |
| 5.1.1.1          | Production of Polysilicon 103                                                         |  |  |  |  |  |

| - |          |                                                           |
|---|----------|-----------------------------------------------------------|
|   | 5.1.1.2  | Production of Monocrystalline Silicon 105                 |
|   | 5.1.1.3  | Production of Multicrystalline Silicon 106                |
|   | 5.1.2    | From Silicon to Wafer 107                                 |
|   | 5.1.2.1  | Wafer Production 107                                      |
|   |          | Wafers from Ribbon Silicon 107                            |
|   | 5.1.3    | Production of Standard Solar Cells 108                    |
|   | 5.1.4    | Production of Solar Modules 111                           |
|   | 5.2      | Cells of Amorphous Silicon 112                            |
|   | 5.2.1    | Properties of Amorphous Silicon 112                       |
|   | 5.2.2    | Production Process 113                                    |
|   | 5.2.3    | Structure of the Pin Cell 113                             |
|   | 5.2.4    | Staebler–Wronski Effect 115                               |
|   |          | Stacked Cells 116                                         |
|   | 5.2.5    |                                                           |
|   | 5.2.6    | Combined Cells of Micromorphous Material 118              |
|   | 5.2.7    | Integrated Series Connection 119                          |
|   | 5.3      | Further Thin Film Cells 120                               |
|   | 5.3.1    | Cells of Cadmium-Telluride 120                            |
|   | 5.3.2    | CIS Cells 121                                             |
|   | 5.4      | Hybrid Wafer Cells 123                                    |
|   | 5.4.1    | Combination of c-Si and a-Si (HIT Cell) 123               |
|   | 5.4.2    | Stacked Cells of III/V Semiconductors 124                 |
|   | 5.5      | Other Cell Concepts 125                                   |
|   | 5.6      | Concentrator Systems 126                                  |
|   | 5.6.1    | Principle of Radiation Bundling 126                       |
|   | 5.6.2    | What Is the Advantage of Concentration? 127               |
|   | 5.6.3    | Examples of Concentrator Systems 128                      |
|   | 5.6.4    | Advantages and Disadvantages of Concentrator Systems 128  |
|   | 5.7      | Ecological Questions on Cell and Module Production 129    |
|   | 5.7.1    | Environmental Effects of Production and Operation 129     |
|   | 5.7.1.1  | Example of Cadmium-Telluride 129                          |
|   | 5.7.1.2  | Example of Silicon 129                                    |
|   | 5.7.2    | Availability of Materials 130                             |
|   |          | Silicon 130                                               |
|   |          | Cadmium-Telluride 131                                     |
|   | 5.7.2.3  | Cadmium Indium Selenide 131                               |
|   | 5.7.2.4  | III/V Semiconductors 132                                  |
|   | 5.7.3    | Energy Amortization Time and Yield Factor 132             |
|   | 5.8      | Summary 135                                               |
|   |          | Calan Mandalas and Calan Computation 199                  |
|   | <b>6</b> | Solar Modules and Solar Generators 139                    |
|   | 6.1      | Properties of Solar Modules 139                           |
|   | 6.1.1    | Solar Cell Characteristic Curve in All Four Quadrants 139 |
|   | 6.1.2    | Parallel Connection of Cells 139                          |
|   | 6.1.3    | Series Connection of Cells 141                            |
|   | 6.1.4    | Use of Bypass Diodes 142                                  |
|   | 6.1.4.1  | Reducing Shading Losses 142                               |
| ( | 6.1.4.2  | Prevention of Hotspots 144                                |

| 6.1.5   | Typical Characteristic Curves of Solar Modules 147 |  |  |  |
|---------|----------------------------------------------------|--|--|--|
| 6.1.5.1 | Variation of the Irradiance 147                    |  |  |  |
| 6.1.5.2 | Temperature Behavior 147                           |  |  |  |
| 6.1.6   | Special Case Thin-film Modules 149                 |  |  |  |
| 6.1.7   | Examples of Data Sheet Information 150             |  |  |  |
| 6.2     | Connecting Solar Modules 150                       |  |  |  |
| 6.2.1   | Parallel Connection of Strings 150                 |  |  |  |
| 6.2.2   | What Happens in Case of Cabling Errors? 152        |  |  |  |
| 6.2.3   | Losses Due to Mismatching 153                      |  |  |  |
| 6.2.4   | Smart Installation in Case of Shading 153          |  |  |  |
| 6.3     | Direct Current Components 156                      |  |  |  |
| 6.3.1   | Principle of Plant Construction 156                |  |  |  |
| 6.3.2   | Direct Current Cabling 156                         |  |  |  |
| 6.4     | Types of Plants 158                                |  |  |  |
| 6.4.1   | Ground-mounted Plants 158                          |  |  |  |
| 6.4.2   | Flat-roof Plants 161                               |  |  |  |
| 6.4.3   | Pitched-roof Systems 162                           |  |  |  |
| 6.4.4   | Facade Systems 164                                 |  |  |  |
|         | •                                                  |  |  |  |
| 7       | System Technology of Grid-connected Plants 165     |  |  |  |
| 7.1     | Solar Generator and Load 165                       |  |  |  |
| 7.1.1   | Resistive Load 165                                 |  |  |  |
| 7.1.2   | DC/DC Converter 166                                |  |  |  |
|         | Idea 166                                           |  |  |  |
| 7.1.2.2 | Buck Converter 166                                 |  |  |  |
| 7.1.2.3 | Boost Converter 169                                |  |  |  |
| 7.1.3   | MPP Tracker 171                                    |  |  |  |
| 7.2     | Construction of Grid-connected Systems 172         |  |  |  |
| 7.2.1   | Feed-in Variations 172                             |  |  |  |
| 7.2.2   | Plant Concepts 173                                 |  |  |  |
| 7.3     | Construction of Inverters 174                      |  |  |  |
| 7.3.1   | Tasks of the Inverter 175                          |  |  |  |
| 7.3.2   | Line-commutated and Self-commutated Inverter 175   |  |  |  |
| 7.3.3   | Inverters Without Transformers 175                 |  |  |  |
| 7.3.4   | Inverters with Mains Transformer 177               |  |  |  |
| 7.3.5   | Inverters with HF Transformer 178                  |  |  |  |
| 7.3.6   | Three-phase Feed-in 179                            |  |  |  |
| 7.3.7   | Further Clever Concepts 180                        |  |  |  |
| 7.4     | Efficiency of Inverters 181                        |  |  |  |
| 7.4.1   | Conversion Efficiency 181                          |  |  |  |
| 7.4.2   | European Efficiency 184                            |  |  |  |
| 7.4.3   | Clever MPP Tracking 185                            |  |  |  |
| 7.5     | Dimensioning of Inverters 186                      |  |  |  |
| 7.5.1   | Power Dimensioning 186                             |  |  |  |
| 7.5.2   | Voltage Dimensioning 187                           |  |  |  |
| 7.5.3   | Current Dimensioning 188                           |  |  |  |
| 7.6     | Requirements of the Grid Operators 188             |  |  |  |

| Contents |                                                        |
|----------|--------------------------------------------------------|
| 7.6.1    | Prevention of Stand-Alone Operation 188                |
| 7.6.2    | Maximum Feed-in Power 190                              |
| 7.6.3    | Reactive Power Provision 191                           |
| 7.7      | Safety Aspects 194                                     |
| 7.7.1    | Earthing of the Generator and Lightning Protection 194 |
| 7.7.1    | Fire Protection 194                                    |
| 1.1.2    | The Hoteetion 194                                      |
| 8        | Storage of Solar Energy 197                            |
| 8.1      | Principle of Solar Storage 197                         |
| 8.2      | Batteries 198                                          |
| 8.2.1    | Lead-acid Battery 199                                  |
| 8.2.1.1  | Principle and Build-up 199                             |
| 8.2.1.2  | <u>.</u>                                               |
| 8.2.1.3  | Battery Capacity 203                                   |
| 8.2.1.4  | Voltage Progression 203                                |
| 8.2.1.5  | Summary 204                                            |
| 8.2.2    | Charge Controllers 204                                 |
| 8.2.2.1  |                                                        |
| 8.2.2.2  |                                                        |
| 8.2.2.3  |                                                        |
| 8.2.2.4  | Examples of Products 206                               |
| 8.2.3    | Lithium Ion Battery 206                                |
| 8.2.3.1  | Principle and Build-up 207                             |
| 8.2.3.2  | Reactions During Charging and Discharging 208          |
| 8.2.3.3  | Material Combinations and Cell Voltage 209             |
| 8.2.3.4  |                                                        |
| 8.2.3.5  |                                                        |
| 8.2.3.6  | Battery Design 211                                     |
| 8.2.3.7  | Lifespan 212                                           |
| 8.2.3.8  | Application Areas 213                                  |
| 8.2.3.9  | Summary 213                                            |
| 8.2.4    | Sodium Sulfur Battery 213                              |
| 8.2.4.1  | Principle and Build-up 213                             |
| 8.2.4.2  | <u>.</u>                                               |
| 8.2.4.3  |                                                        |
| 8.2.4.4  | Summary 216                                            |
| 8.2.5    | Redox Flow Battery 216                                 |
| 8.2.5.1  | Principle and Build-up 216                             |
| 8.2.5.2  | Behavior in Practice 218                               |
| 8.2.5.3  | Concrete Applications 219                              |
| 8.2.5.4  | Summary 220                                            |
| 8.2.6    | Comparison of the Different Battery Types 220          |
| 8.3      | Storage Use for Increase of Self-consumption 220       |
| 8.3.1    | Self-consumption in Domestic Households 221            |
| 8.3.1.1  | Solution Without Storage 222                           |
| 8.3.1.2  | Solution with Storage 223                              |
| 8.3.1.3  | Examples of Storage Systems 223                        |
| 0.5.1.5  | Liamples of Storage systems 223                        |

| 8.3.1.4 | How Much Cost a Kilowatt-Hour? 225                        |
|---------|-----------------------------------------------------------|
| 8.3.1.5 |                                                           |
| 8.3.2   | Self-consumption in Commercial Enterprises 227            |
| 8.3.2.1 | Example Production Factory 227                            |
| 8.3.2.2 | Example Hospital 227                                      |
| 8.4     | Storage Deployment from the Point of View of the Grid 228 |
| 8.4.1   | Peak-shaving with Storages 229                            |
| 8.4.2   | Governmental Funding Program for Solar Storages 229       |
| 8.5     | Stand-alone Systems 232                                   |
| 8.5.1   | Principal Structure 232                                   |
| 8.5.2   | Examples of Stand-alone Systems 232                       |
| 8.5.2.1 | Solar Home Systems 232                                    |
| 8.5.2.2 | Hybrid Systems 234                                        |
| 8.5.3   | Dimensioning Stand-alone Plants 235                       |
| 8.5.3.1 | Acquiring the Energy Consumption 235                      |
| 8.5.3.2 | Dimensioning the PV Generator 236                         |
| 8.5.3.3 | Selecting the Battery 238                                 |
| 9       | Photovoltaic Metrology 241                                |
| 9.1     | Measurement of Solar Radiation 241                        |
| 9.1.1   | Global Radiation Sensors 241                              |
| 9.1.1.1 | Pyranometer 241                                           |
| 9.1.1.2 | Radiation Sensors from Solar Cells 243                    |
| 9.1.2   | Measuring Direct and Diffuse Radiation 244                |
| 9.2     | Measuring the Power of Solar Modules 245                  |
| 9.2.1   | Build-up of a Solar Module Power Test Rig 245             |
| 9.2.2   | Quality Classification of Module Flashers 246             |
| 9.2.3   | Determination of the Module Parameters 247                |
| 9.3     | Peak Power Measurement at Site 248                        |
| 9.3.1   | Principle of Peak Power Measurement 248                   |
| 9.3.2   | Possibilities and Limits of the Measurement Principle 248 |
| 9.4     | Thermographic Measuring Technology 249                    |
| 9.4.1   | Principle of Infrared Temperature Measurement 250         |
| 9.4.2   | Bright Thermography of Solar Modules 251                  |
| 9.4.3   | Dark Thermography 254                                     |
| 9.5     | Electroluminescence Measuring Technology 254              |
| 9.5.1   | Principle of Measurement 254                              |
| 9.5.2   | Examples of Photos 255                                    |
| 9.5.3   | Low-cost Outdoor Electroluminescence Measurements 257     |
| 9.6     | Analysis of Potential Induced Degradation (PID) 259       |
| 9.6.1   | Explanation of the PID Effect 260                         |
| 9.6.2   | Test of Modules for PID 262                               |
| 9.6.3   | EL Investigations to PID 263                              |
| 10      | Design and Operation of Grid connected Plants 245         |
| 10 1    | Design and Operation of Grid-connected Plants 265         |
| 10.1    | Planning and Dimensioning 265 Selection of Site 265       |
|         |                                                           |

| 10.1.2   | Shading 265                                                 |  |  |  |  |  |
|----------|-------------------------------------------------------------|--|--|--|--|--|
|          | Shading Analysis 266                                        |  |  |  |  |  |
|          | Near Shading 266                                            |  |  |  |  |  |
|          | Self-shading 268                                            |  |  |  |  |  |
|          | Optimized String Connection 269                             |  |  |  |  |  |
|          | Plant Dimensioning and Simulation Programs 270              |  |  |  |  |  |
|          | Inverter Design Tools 270                                   |  |  |  |  |  |
|          | Simulation Programs for Photovoltaic Plants 270             |  |  |  |  |  |
|          | Economics of Photovoltaic Plants 272                        |  |  |  |  |  |
|          | The Renewable Energy Law 273                                |  |  |  |  |  |
|          | Return Calculation 273                                      |  |  |  |  |  |
|          | Input Parameters 273                                        |  |  |  |  |  |
|          | Amortization Time 274                                       |  |  |  |  |  |
|          | Property Return 274                                         |  |  |  |  |  |
|          | Profit Increase Through Self-consumption of Solar Power 276 |  |  |  |  |  |
|          | Further Influences 276                                      |  |  |  |  |  |
|          | Surveillance, Monitoring, and Visualization 277             |  |  |  |  |  |
|          | Methods of Plant Surveillance 277                           |  |  |  |  |  |
|          | Monitoring PV Plants 278                                    |  |  |  |  |  |
|          | Specific Yields 278                                         |  |  |  |  |  |
|          | Losses 279                                                  |  |  |  |  |  |
| 10.3.2.3 | Performance Ratio 279                                       |  |  |  |  |  |
|          | Concrete Measures for Monitoring 280                        |  |  |  |  |  |
|          | Visualization 280                                           |  |  |  |  |  |
|          | Operating Results of Actual Installations 281               |  |  |  |  |  |
|          | Pitched Roof Installation from 1996 281                     |  |  |  |  |  |
|          | Pitched Roof Installation from 2002 282                     |  |  |  |  |  |
|          | Flat Roof from 2008 283                                     |  |  |  |  |  |
| 101110   | 200                                                         |  |  |  |  |  |
| 11       | Future Development 285                                      |  |  |  |  |  |
|          | Potential of Photovoltaics 285                              |  |  |  |  |  |
|          | Theoretical Potential 285                                   |  |  |  |  |  |
|          | Technically Useful Radiation Energy 285                     |  |  |  |  |  |
|          | Roofs 286                                                   |  |  |  |  |  |
| 11.1.2.2 | Facades 286                                                 |  |  |  |  |  |
| 11.1.2.3 | Traffic Routes 287                                          |  |  |  |  |  |
| 11.1.2.4 | Free Areas 287                                              |  |  |  |  |  |
| 11.1.3   | Technical Electrical Energy Generation Potential 287        |  |  |  |  |  |
| 11.1.4   | Photovoltaics versus Biomass 288                            |  |  |  |  |  |
| 11.2     | Efficient Promotion Instruments 289                         |  |  |  |  |  |
| 11.3     | Price and Feed-in Tariff Development 290                    |  |  |  |  |  |
| 11.3.1   | Price Development of Solar Modules 290                      |  |  |  |  |  |
| 11.3.2   | Development of Feed-in Tariffs 292                          |  |  |  |  |  |
| 11.4     | Renewable Energies in Today's Power Supply System 292       |  |  |  |  |  |
| 11.4.1   | Structure of Electricity Generation 293                     |  |  |  |  |  |
| 11.4.2   | Types of Power Plants and Control Energy 293                |  |  |  |  |  |
|          | Interplay Retween Sun and Wind 294                          |  |  |  |  |  |

|          | Exemplary Electricity Generation Courses 295                     |  |  |  |  |  |
|----------|------------------------------------------------------------------|--|--|--|--|--|
| 11.5     | Thoughts on Future Energy Supply 298                             |  |  |  |  |  |
| 11.5.1   | Consideration of Different Future Scenarios 298                  |  |  |  |  |  |
| 11.5.2   | Options to Store Electrical Energy 301                           |  |  |  |  |  |
| 11.5.2.1 | Pumped Storage Power Plants 301                                  |  |  |  |  |  |
| 11.5.2.2 | Compressed Air Storage 301                                       |  |  |  |  |  |
| 11.5.2.3 | Battery Storage 302                                              |  |  |  |  |  |
| 11.5.2.4 | Electric Mobility 302                                            |  |  |  |  |  |
| 11.5.2.5 | Hydrogen as Storage 302                                          |  |  |  |  |  |
| 11.5.2.6 | Power to Gas: Methanation 303                                    |  |  |  |  |  |
| 11.5.3   | Alternatives to Storage 304                                      |  |  |  |  |  |
| 11.5.3.1 | Active Load Management by Smart Grids 304                        |  |  |  |  |  |
|          | Expansion of the Electricity Grids 304                           |  |  |  |  |  |
| 11.5.3.3 | Limitation of the Feed-in Power 304                              |  |  |  |  |  |
| 11.5.3.4 | Use of Flexible Power Plants 304                                 |  |  |  |  |  |
| 11.6     | Conclusion 305                                                   |  |  |  |  |  |
|          |                                                                  |  |  |  |  |  |
| 12       | Exercises 307                                                    |  |  |  |  |  |
|          |                                                                  |  |  |  |  |  |
| Α        | Solar Radiation Diagrams 317                                     |  |  |  |  |  |
|          |                                                                  |  |  |  |  |  |
| В        | Checklist for Planning, Installing, and Operating a Photovoltaic |  |  |  |  |  |
|          | <b>Plant</b> 327                                                 |  |  |  |  |  |
|          |                                                                  |  |  |  |  |  |
| C        | Physical Constants/Material Parameters 329                       |  |  |  |  |  |
|          |                                                                  |  |  |  |  |  |
|          | References 331                                                   |  |  |  |  |  |
|          | neiciences 331                                                   |  |  |  |  |  |
|          | Further Information on Photovoltaics 339                         |  |  |  |  |  |
|          | Further initiality on Photovoltaics 559                          |  |  |  |  |  |
|          | 1 1 041                                                          |  |  |  |  |  |
|          | Index 341                                                        |  |  |  |  |  |